Rethinking automatic estimates of language: Effects of speech style and talker gender on error rates for the Language ENvironment Analysis (LENA) system in quantifying adult language input

Matthew Lehet¹, Meisam K. Arjmandi¹, Derek Houston², Laura C. Dilley¹,*

¹Department of Communicative Sciences and Disorders, Michigan State University
²Department of Otolaryngology – Head and Neck Surgery, The Ohio State University

*Corresponding author

Contact Address
Laura C. Dilley, Ph.D.
Department of Communicative Sciences and Disorders
Michigan State University
104 Oyer Centerp
East Lansing, MI 48824
Email: ldilley@msu.edu

Journal of Speech, Language and Hearing Research
(under review, April, 2019)
Abstract

Purpose: Automatic speech processing devices have become popular in recent years for assessing the amount of ambient language input available to children in their home environments. Yet, prior studies have not investigated potential sources of systematic error in automatic detection of language input to children. We present an independent assessment of language input accuracy for the widely-used Language ENVironment Analysis (LENA) system. LENA is a wearable device that collects daylong recordings of children’s language environments, classifies audio sources, and provides an automated Adult Word Count. We investigated whether the amounts of error in LENA’s automatic estimates of language input to a child were consistent across families, and whether error rates differed systematically as a function of the gender of adult talkers and whether adults’ speech was directed to children or adults.

Method: Audio was sampled from within one day-long LENA recording from each of 23 families with a child aged 4 – 34 months. Portions of recordings where children were expected to be at home, i.e., beginnings and endings of day-long recordings, and audio within and between LENA-identified conversations was sampled. For sampled audio, human coders identified start and end times of communicative vocalizations by adults and children, counted intelligible words produced by adults, and determined whether adults’ speech was addressed to children or to other adults. LENA’s classification accuracy was assessed by parceling sampled audio into 100 msec frames, then comparing human and LENA classifications for each frame.

Results: LENA made correct classifications that intelligible adult speech had occurred (i.e., a necessary condition for LENA to correctly increment its Adult Word Count metric) for 67% of frames on average across families. This meant there was an average false negative rate of 33% across families for intelligible adult speech classification, with false negative rates ranging across families from a low of 18% of missed frames to a high of 55% of missed frames. Further, on average LENA’s Adult Word Count typically overcounted relative to actual counts of intelligible adult words by a mean +47% error; there was also substantial variability in amounts of Adult Word Count error across families, where the amounts of error ranged from undercounting words by 17% to overcounting words by 208%. Finally, the amounts of error in both classification of intelligible adult speech and Adult Word Count were systematically and significantly affected by the gender of an adult talker (male vs. female) and whether that talker was speaking to a child or an adult. The condition showing the greatest errors in both classification and Adult Word Count involved speech of adult females addressing children.

Conclusions: These results show that LENA’s classification decisions and Adult Word Count entail random error which is sometimes quite large in magnitude. Further, systematic error was shown for LENA’s classifications and Adult Word Count as a function of talker’s gender and style of speech; the most error occurred when adult female speakers talked to children. These results suggest that relying solely on LENA’s Adult Word Count estimates is not a best practice and may lead to invalid clinical judgments and/or research conclusions.

Acknowledgments: The researchers would like to acknowledge help of Jessica Reed and Yuanyuan Wang for their help in data collection and Somnath Roy for assistance with analyses. We would also like to thank James Chen, Elizabeth Remy, Josh Zhao, Chitra Lakshumanan, Courtney Cameron, Sophia Stevens, Nikaela Losievskei, Riley Reed, Kayli Silverstein, and Kelsey Dods for their diligent work coding audio. Thanks to Melanie Soderstrom for sharing previous analysis of LENA reliability with us and for many useful discussions. We gratefully acknowledge the support of NIH grant R01 DC008581.
Introduction

It is now well-established that the quantity of speech young children experience predicts their speech and language outcomes (Greenwood, Thiemann-Bourque, Walker, Buzhardt, & Gilkerson, 2011; Hart & Risley, 1995; Hoff & Naigles, 2002; Montag, Jones, & Smith, 2018; Romeo et al., 2018; Rowe, 2012; Weisleder & Fernald, 2013; Weizman & Snow, 2001). Specifically, children’s language development attainment appears to be best predicted by the amount of language directed to them – i.e., the amount of so-called infant-directed speech – rather than the amount of overheard or adult-directed speech (Romeo et al., 2018; Weisleder & Fernald, 2013). Therefore, quantifying the amount of language in children’s natural home environments – especially the amount of language spoken directly to children themselves – is central to numerous research and clinical purposes. From a research perspective, quantifying the amount of language spoken in a child’s home is an important step in addressing theoretical questions about language development (e.g. Montag et al., 2018; Shneidman, Arroyo, Levine, & Goldin-Meadow, 2013; Weisleder & Fernald, 2013). From a clinical perspective, quantifying the amount of language in a child’s home assists speech-language pathologists to determine how much caregiver communication is occurring to support language development – information often essential to determining the effectiveness of caregiver-centered interventions for enhancing the frequency of child-directed communications (Roberts & Kaiser, 2011; Vigil, Hodges, & Klee, 2005).

The commercial availability of automatic speech processing technologies has meant that such devices have become an increasingly popular means of quantifying ambient language in a child’s environment. One widely-employed automatic speech processing device used by researchers and clinicians is the Language ENvironment Analysis (LENA™; LENA Research Foundation, Boulder, CO) system (Christakis et al., 2009; Ford, Baer, Xu, Yapanal, & Gray, 2008; Gilkerson, Coulter, & Richards, 2008; Gilkerson & Richards, 2008; Greenwood et al., 2011; Xu, Yapanal, & Gray, 2009; Zimmerman et al., 2009). This system consists of an audio recorder within a vest worn by a child capable of holding up to 16 hours of audio. LENA uses off-line software to generate an automated Adult Word Count that has now been widely used in numerous basic scientific and applied clinical studies and settings (Burgess, Audet, & Harjusola-Webb, 2013; Caskey, Stephens, Tucker, & Vohr, 2011, 2014; Caskey & Vohr, 2013; Johnson, Caskey, Rand, Tucker, & Vohr, 2014; Oller et al., 2010; Pae et al., 2016; Sacks et al., 2014; Soderstrom & Wittebolle, 2013; Suskind, Leffel, et al., 2016; Thiemann-Bourque, Warren, Brady, Gilkerson, & Richards, 2014; Wang et al., 2017; Warlaumont, Richards, Gilkerson, & Oller, 2014; Warren et al., 2010; Weisleder & Fernald, 2013; Zhang et al., 2015).

Yet, questions remain about LENA’s strengths – and weaknesses – as a tool for quantifying children’s linguistic and auditory environments. The present paper addressed unanswered questions about the accuracy of LENA’s Adult Word Count measure – a measure focused on here, due to its widespread adoption as a means of quantifying ambient language in a child’s environment. (Note that the present paper does not consider accuracy of other measures generated by LENA, such as its estimates of conversational turn counts and/or child vocalizations.) We questioned whether LENA’s Adult Word Count measure would be equally accurate across different family home environments, styles of speech, and/or genders of the talkers. Achieving a high and consistent level of accuracy across all these incidental variables is essential for meaningful interpretations to be drawn from data about individual families and the language environments they provide. Consider the consequences, for instance, if speech spoken by an adult man were systematically and incorrectly identified an adult woman, or if speech spoken by an adult woman were systematically and incorrectly identified as a child. Such mis-attributions, if attested, could generate invalid clinical (or research) inferences about both caregiver and child vocalization behaviors. Likewise, consider the consequences if the number of words identified by the LENA software differed substantially from the actual speech content of the environment. If measurement errors were large enough, they could potentially obscure the true picture of behavior profoundly. If there were large errors due to undercounting, then families providing a lot of input to a child would present as if they provided very little input to the child. If there were large errors due to overcounting, then families providing very little input to a child would present as if they provided a lot of input to the child. Further, any errors
systematically associated with classes of speech of interest – such as female speech – would be more problematic. We therefore pose the following instructive rhetorical questions: What is an acceptable amount of error in estimates of speech in a child’s environment? Similarly, what is an acceptable amount of mis-attribution of speech spoken by one talker to another talker?

Several studies have quantified the extent of correlation between LENA’s Adult Word Count and human manual transcriptions of adult words. In general, these studies showed that LENA’s Adult Word Count is correlated with the actual number of words spoken by adults (Table 1). Other studies (Ambrose, Walker, Unflat-Berry, Oleson, & Moeller, 2015; Burgess et al., 2013; Ramírez-Esparza, García-Sierra, & Kuhl, 2014) have transcribed audio from LENA recordings to calculate word counts from human transcription but did not directly compare these word counts to LENA’s Adult Word Count. However, the proportion of unexplained variance in LENA’s Adult Word Count accuracy (1- \(r^2 \)) has been shown to range up to 40% (cf. Soderstrom & Wittebolle, 2013), indicating little a priori basis to determine the expected degree of match between LENA Adult Word Count and actual human word counts for any given recording.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Language</th>
<th>Pearson’s (r)</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xu et al. (2009)*</td>
<td>English</td>
<td>.92</td>
<td>One-hour samples with high vocal activity from N = 70 families recorded at home (a total of 4200 minutes)</td>
</tr>
<tr>
<td>McCauley et al. (2011)*</td>
<td>English</td>
<td>.81</td>
<td>Five-minute segments from N = 30 preschool recordings (a total of 150 minutes)</td>
</tr>
<tr>
<td>Caskey et al. (2014)</td>
<td>English</td>
<td>.93</td>
<td>N = 5 5-minute recordings from a neonatal intensive care unit (a total of 25 minutes)</td>
</tr>
<tr>
<td>Gilkerson et. al. (2018)</td>
<td>English</td>
<td>.95</td>
<td>A total of five thousand minutes from N = 94 families (including the 70 families from Xu et al. 2009)</td>
</tr>
<tr>
<td>Soderstrom & Wittebolle (2013)</td>
<td>English</td>
<td>.76</td>
<td>One hundred eighty three five-minute intervals from N = 11 children recorded at home and at daycare (a total of 915 minutes)</td>
</tr>
<tr>
<td>Schwarz et al. (2017)*</td>
<td>Swedish</td>
<td>.67</td>
<td>Forty-eight five-minute intervals selected from N = 4 12-hour recordings (a total of 240 minutes)</td>
</tr>
<tr>
<td>Weisleder & Fernald (2013)</td>
<td>Spanish</td>
<td>.80</td>
<td>Sixty-minutes constructed from non-contiguous 5 minute intervals from 10 at-home recordings.</td>
</tr>
<tr>
<td>Oetting et al. (2009)*</td>
<td>English</td>
<td>.71 and .85</td>
<td>Seventeen 30-minute samples of pre-recorded mothers and their children (a total of 510 minutes)</td>
</tr>
<tr>
<td>Gilkerson et al. (2015)</td>
<td>Chinese</td>
<td>.73</td>
<td>Three 5-minute samples from daylong at home recordings of N = 22 families (a total of 330 minutes)</td>
</tr>
<tr>
<td>Busch et al. (2017)</td>
<td>Dutch</td>
<td>.87</td>
<td>Forty eight 5-minute samples from 8 recordings from 6 children (a total of 240 minutes)</td>
</tr>
<tr>
<td>Canault et al. (2016)</td>
<td>French</td>
<td>.64</td>
<td>Three hundred twenty-four 10-minute samples from home recordings of N = 18 children recorded at 3 time points (a total of 3240 minutes)</td>
</tr>
<tr>
<td>Pae et al. (2016)</td>
<td>Korean</td>
<td>.72</td>
<td>Twenty-seven 10-minute samples from home recordings and 36 10-minute samples from an experimental reading task (a total of 630 minutes)</td>
</tr>
</tbody>
</table>

Note. Citations with asterisks (*) did not appear in peer-reviewed journals.

As noted by Busch et al. (2017), correlation coefficients are a poor means of assessing accuracy, or variability in accuracy. Correlations indicate the degree of scatter of values around a line of best fit, but
do not reveal degree of measurement bias, which might be proportional (\textit{i.e.}, a difference in slopes best-fit lines from 1) or fixed (\textit{i.e.}, a non-zero intercept; Busch, Sangen, Vanpoucke, & van Wieringen, 2017; Ludbrook, 1997). Therefore, it is misleading to rely solely on correlations to assess whether one method (\textit{e.g.}, actual human word counts) can be replaced with another (LENA’s Adult Word Count estimates). Moreover, it is not clear that methods can be validly compared by only regressing results of one method (\textit{e.g.}, LENA’s Adult Word Count) on another (\textit{e.g.} human word counts) using ordinary least squares (Bland & Altman, 1986; Busch et al., 2017; Ludbrook, 1997). Linear modeling does provide useful information about whether independent measurements (word counts from LENA and humans should not be independent) are related to one another, especially when used with the proper random effects structure (Barr, Levy, Scheepers, & Tily, 2013; Jaeger, 2008).

We asked whether accuracy of LENA’s Adult Word Count estimates might depend on a \textit{prior} step: its classification accuracy for sound sources. There have been only a handful of studies examining LENA’s classification accuracy, and fewer still that examine whether classification accuracy systematically affects Adult Word Count accuracy. Yet, LENA’s Adult Word Count estimates are the end result of a series of multiple, hierarchically dependent signal processing steps to classify audio sound sources; errors introduced at any stage could persist and potentially be compounded to differentially affect Adult Word Count accuracy. The initial steps of LENA’s algorithms involve classifying (\textit{i.e.}, labeling) stretches of audio of variable length as female adult speech (labeled as FAN in LENA’s ADEX software), male adult speech (MAN), key child (CHN), other child (CXN), overlapping vocalization (OLN), TV/electronic media (TVN), noise (NON), silence (SIL), or uncertain (FUZ). Next, the seven categories other than silence are divided into “near-field” or “far-field” sounds based on the energy in the acoustic signal. Next, short stretches of audio categorized as (near-field) speech or speech-like vocalizations by an adult or child that are temporally close to one another are grouped together into units called “conversational blocks”. Remaining contiguous stretches of audio classified as “far-field” (or “faint”) are reclassified as “Pause” units given that any speech in such audio is probably unintelligible or hard to hear (Xu, Yapanel, Gray, & Baer, 2008; Xu, Yapanel, Gray, Gilkerson, et al., 2008). Finally, stretches of audio classified as near-field male or female adult speech (MAN or FAN) are used to derive LENA’s Adult Word Count values.

Prior work hints at a relationship between Adult Word Count accuracy and segment classification accuracy. In a well-cited but unpublished study, Xu et al. (2009) reported an overall Pearson’s \(r \) of 0.92 between human transcription and LENA’s Adult Word Count within 1-hour samples from 70 recordings, although many details of their analysis are not reported. Xu et al. further reported a substantial difference in word count estimates (human – LENA) for two separate 12-hour recordings, one in a quiet environment and one in a noisy environment; the difference was roughly -0.4% for the former but -27.3% for the latter. This tantalizing finding suggests substantial variability in Adult Word Count accuracy may occur in the LENA system, though this remains largely unexplored.

A handful of studies have evaluated LENA’s accuracy at classifying audio through labeling segments, as opposed to Adult Word Count accuracy. Perhaps the most widely cited example, Xu et al. (2009; Xu, Yapanel, Gray, Gilkerson, et al., 2008), is frequently referenced to establish the reliability of LENA classification (Ambrose, VanDam, & Moeller, 2014; Caskey & Vohr, 2013; Dykstra et al., 2013; Gilkerson, Richards, & Topping, 2017; Gilkerson, Richards, Warren, et al., 2017; Greenwood et al., 2017; Greenwood et al., 2011; Johnson et al., 2014; Marchman, Martínez, Hurtado, Grüter, & Fernald, 2017; Ota & Austin, 2013; Ramírez-Esparza, García-Sierra, & Kuhl, 2017; Richards, Gilkerson, Xu, & Topping, 2017; Richards, Xu, et al., 2017; Sangwan, Hansen, Irvin, Crutchfield, & Greenwood, 2015; Thiemann-Bourque et al., 2014; VanDam, Ambrose, & Moeller, 2012; Warlaumont et al., 2010; Warlaumont et al., 2014; Xu, Gilkerson, Richards, Yapanel, & Gray, 2009; Xu, Richards, et al., 2009; Zhang et al., 2015). The classification accuracy data reported by Xu et al., and re-reported in Christakis et al., (2009), Zimmerman et al. (2009), and Warren et al., (2010) was based on human coding generated for another unpublished study (Gilkerson et al., 2008). Xu et al. reported that LENA accurately classified 82%, 76%, and 76% of adult, child, and other segments, respectively. Warren et al. (2010) suggested this agreement was the result of comparisons within 10 msec intervals, such that 82% of 10 msec intervals
that humans labeled as adult speech were labeled as such by LENA. This data set has also been analyzed in great detail for the accuracy of child vocalization classification (Oller et al., 2010). However, Xu et al. (2009; p. 5) state that their algorithm for sampling the audio for use in the analysis “was designed to automatically detect high levels of speech activity between the key child and an adult”, leaving unclear whether their sampling procedure might have introduced bias into estimates of accuracy that would affect generalizability to other situations.

Groups outside of the LENA organization have also investigated classification by LENA. Ko, Seidl, Cristia, Reimchen, and Soderstrom (2016), randomly selected LENA-defined segments (50 FAN and 50 CHN) from 14 recordings (1400 total segments). Humans then manually coded these segments. LENA’s mean accuracy was 84%; however, accuracy ranged between 51% and 93% across recordings, suggesting a great deal of variability. A similar recent analysis of classification accuracy (Seidl et al., 2018) had human listeners code 1384 LENA defined FAN and CHN segments. They found overall accuracy of 72% with confusion between FAN and CHN segments occurring 15% of the time. VanDam and Silbert (2013; 2016) elaborated upon other classification results by determining factors in the audio that predict accuracy in LENA. They selected 30 segments each from 26 recordings that LENA had classified as FAN, MAN, or CHN. Human listeners classified these LENA-defined segments as mother, father, child or other. Human listeners classified segments LENA identified as FAN or MAN as adult speech 80% of the time. They further found evidence that LENA’s classification relied on fundamental frequency (F0) and duration as major criteria for deciding among adult male, adult female, or child talkers. Missing from studies of LENA’s audio classification reliability, among other things, are robust assessments of LENA’s false negative rate (since many studies have focused only on stretches of audio that LENA had identified as a talker), a thorough characterization of variability in accuracy across multiple families, and identifying how classification error carries over to LENA’s Adult Word Count.

Further, none of the studies mentioned above assessed whether there are systematic biases in accuracy of LENA’s classification of audio or Adult Word Count estimates across adult talkers or situations. Given VanDam and Silbert’s (2016) finding that LENA appears to rely heavily on F0 and duration to classify a talker as a man, woman, or child, it is notable that F0 varies considerably as a function of many factors, including talker gender, speaker size, emotional state, and/or communicative intent (Bachorowski, 1999; Benders, 2013; Fernald, 1989; Pisanski et al., 2014; Pisanski & Rendall, 2011; Podesva, 2007; Porritt, Zinser, Bachorowski, & Kaplan, 2014). Situation-specific speech register could potentially affect accuracy in LENA, something especially important for clinical and research issues in child language. Adults often adopt an ID speech register when speaking with young children, typically characterized by higher and more variable F0 (i.e., dynamic pitch) and slower rate (i.e., longer durations) relative to an AD register, along with shifts in other kinds of acoustic cues (e.g., distributions of vowel formants; Cristia & Seidl, 2013; Kondaurova, Bergeson, & Dilley, 2012; Wieland, Burnham, Kondaurova, Bergeson, & Dilley, 2015). Therefore, the intended addressee—child or adult—can have implications for distributions of acoustic cues—especially F0 and duration—in ID vs. AD speech, potentially systematically affecting LENA performance. The gender of a talker and the addressee of a segment of speech—whether addressing a child or an adult—could in theory systematically affect accuracy of LENA’s measures. Ensuring the consistency and comparability of metrics in this widely-used device is important for ensuring the soundness of theoretical claims or clinical guidance made on LENA’s output.

The present study, therefore, provided important new data regarding variability and consistency in LENA’s accuracy for quantifying children’s language environments across families in English. Further, we asked whether differences in classification accuracy for human vocalizations could explain differences in Adult Word Count accuracy. Our sampling method relied on selecting audio from cases where LENA had and had not identified speech in order to evaluate LENA’s accuracy more thoroughly than prior studies. Finally, an important goal was to quantify how accuracy in LENA’s classifications and Adult Word Count might differ based on the gender of the talker and the addressee in ID vs. AD speech. Previewing our results, we found that LENA’s classification and Adult Word Count accuracy depended on both the gender (male vs. female) of the talker and the addressee (ID vs. AD).
Methods

The present study was conducted as part of initial phases of a larger NIH-funded project at the Ohio State University and Michigan State University focused on investigating how the amount and quality of language input in a child’s environment predicts language development in children with and without hearing loss. This study was an initial validation test and assessment of whether LENA’s Adult Word Count was suitable as a primary dependent measure for our broader project. Specifically, we asked (1) whether error in LENA’s Adult Word Count was small and consistent across families; (2) whether this error was unbiased across and robust to conditions of interest, i.e., ID vs. AD speech; and (3) whether the amount of error was affected by extraneous factors, such as whether talkers were male vs. female. Satisfying (1), (2), and (3) were necessary preconditions for using LENA’s Adult Word Count as a primary metric for our individual differences research. The study was also designed to permit identifying systematic sources of inaccuracy or bias in LENA classification steps that might help explain downstream inaccuracies in calculation of the LENA Adult Word Count.

Participants. LENA recordings used in the present study were collected in pilot and initial stages of the larger NIH-funded project described above. Participating families gave permission to participate and to have their child wear a LENA system for at least one day. The research was approved by the Institutional Review Boards at Ohio State University and Michigan State University. The present study was based on a single day-long recording from each of a total of 23 enrolled families who had completed at least one day-long LENA recording at the time of initiation of the present study. If an enrolled family had completed more than just one LENA recording, as called for under the broader grant protocol, then the first LENA recording made was included in the present study. Each family had a child aged 4 – 34 months ($M = 20$ months, $SD = 8.8$ months) at the time of recording. Target children (i.e., those wearing the LENA device) had a range of hearing statuses, consistent with the broader project goals; these included four families with a target child which had normal hearing ($M = 14.9$ months old, $SD = 14.6$ months), eight families with a target child that had hearing aids ($M = 15.6$ months old, $SD = 6.2$ months), two families with a target child had a cochlear implant in one ear and a hearing aid in the other ($M = 21.9$ months old, $SD = 1.3$ months), and nine families with a target child had bilateral cochlear implants ($M = 25.1$ months old, $SD = 7.7$ months). Children with cochlear implants had 3 – 22 months ($M = 10$ months, $SD = 7.54$ months) of post-implantation hearing experience. Given that we had a different number of recordings at various time points in the longitudinal study we used a consistent rule across all families by using the first available recording from each family where the child had hearing experience.

General research design and selection of audio. Our approach involved: (1) sampling audio from LENA recordings of family language environments; (2) enlisting human coders to (a) identify times when they heard speech vocalizations, and, for adults’ speech, determine whether it was child- or adult-directed, and (b) count the number of words in adult speech utterances; (3) parceling sampled audio into 100 ms frames, then for each frame, compare the code from humans with that from LENA; and (4) compare human word counts and LENA’s Adult Word Count estimates.

Prior published studies of LENA classification accuracy have not estimated the proportion of intelligible speech which LENA inaccurately classifies as non-speech (i.e., the false negative rate). Our study thus sought to estimate a false negative rate in part by sampling pause units, i.e., portions of audio which LENA had classified as not containing near-field speech, as well as from conversational blocks, i.e., portions of audio which LENA had classified as containing near-field speech (although see Schwarz et al., 2017; Soderstrom & Wittebolle, 2013 for analysis of AWC accuracy that included audio from LENA defined pauses). Thus, unlike prior classification studies (e.g., VanDam & Silbert, 2016), our design permitted estimation of LENA’s classification rates of true positives, true negatives, false positives, and false negatives for categories like speech vs. non-speech.
From each family’s recording, we first excluded audio for which the child was asleep based on context in the audio which evidenced prolonged heavy breathing, the parents saying goodnight, and/or other contextually-based cues to naps, since there was no communicative relevance for the child of any adult speech during those times. Next, we selected the first and last 30 “adult-speech” conversational blocks, i.e., those that had been classified by LENA’s off-line Advanced Data Extractor (ADEX) classification software (v. 1.1.3-5r10725) as involving at least one adult talker – female (FAN) or male (MAN) – as a primary participant. The selection of conversational blocks containing adult speech was motivated by the desire to use LENA’s Adult Word Count metric, which is only calculated for segments of adult speech. In total, samples of approximately 30 minutes of audio (“sampled audio”) were drawn from the beginnings and endings of each recording. These times were selected because family members were likely to be at home and engaged in routine, child-centered activities, e.g., waking up, eating morning or evening meals, and getting ready for bed. As such, this audio was deemed likely to be a fairer test of LENA’s capabilities as it was deemed likely to directly assess the home environment without variability introduced by families engaging in a wide-ranging set of daily activities. Additionally, given our priority of maximizing reliable determination of when ID vs. AD speech was happening from context, sampling audio from the beginning and end of the day had the benefit of enhancing continuity of understanding situational contexts of communicative interactions, which other sampling methods might not have afforded. If the total duration of either the first 30 or last 30 adult speech conversational blocks was less than 10 minutes, then for whichever portion(s) that fell below 10 minutes, we included the next (or preceding, respectively) consecutive adult speech conversational block until the 10-minute minimum was reached. This yielded a minimum of 20 minutes of sampled audio from adult speech conversational blocks per recording ($M = 22.98$ min, $SD = 5.36$ min, $range: 20.02 – 44.33$ min). There was considerable variability in conversational block durations across recordings ($M = 10.65$ sec., $SD = 21.07$ sec., $median = 4.17$ sec., $range: 0.6 – 529.97$ sec.).

The sampled audio also included approximately 9 minutes of short chunks of audio from pause units (i.e., audio that LENA had identified as not containing near-field speech), which were interleaved between audio portions of adult speech conversational blocks from the beginning and end of the day that had been selected as described above. The mean portion of sampled audio from pause units was $M = 9.31$ minutes ($SD = 0.43$ min, $range: 8.75 – 9.96$ min). Sampled audio from pause units was selected by first dividing pause units that fell between selected adult conversational blocks into 5-second chunks; chunks were then randomly selected for study inclusion until 5 minutes total duration from pause units was selected at the beginning and at the end of the file. Any portions of sampled audio that incidentally overlapped with a conversational block consisting of primarily child talkers were excluded. After this exclusion, if the total duration of sampled audio from pause units was less than 4 minutes, then additional 5-second chunks of pause units were randomly included in the sample until a minimum of 4 minutes from pause units was achieved. Durations of pause intervals between the sampled conversational blocks with adult speech varied considerably ($M = 31.9$ sec., $SD = 231.0$ sec., $median = 10.9$ sec., $range: 2.3 - 12062.9$ sec.). Across all selected recordings, sampled audio for analysis (from conversational blocks and pause units) consisted of a mean of 32.29 minutes of audio per participating family ($SD = 5.42; range: 29.07 – 54.15$ min.). The total size of the sample was 735 minutes of total coded audio, which compares favorably with the amount of audio examined in the other studies listed in Table 1. Independent variables of primary interest for statistical hypothesis testing were (1) the gender of adult speakers identified by human listeners (male vs. female) and (2) addressee (ID vs. AD). Due to the spontaneous nature of speech, not all conditions were represented for all families.

Coding of human communicative vocalizations by human analysts. In this study, ten trained human analysts identified human communicative vocalizations (i.e., speech or speech-like vocalizations by adult male, adult female or child talkers) and marked these intervals on the relevant textgrid tier (see Figure 1) in Praat (Boersma & Weenink, 2017). For stretches judged to have been adult speech, analysts indicated whether the speech was directed to a child (ID speech), to an adult (AD speech), or neither (e.g., self-directed speech, pet-directed speech) based on context. Laughs, burps, sighs and other non-speech noises
made in the throat (e.g., in surprise) were not treated as speech nor as speech-like vocalizations. Stretches of speech that were unintelligible, due to being e.g., very faint or distant, were likewise not identified nor labeled, consistent with LENA’s goal of excluding “far-field” speech unlikely to contribute to child language development. Analysts counted all words within a contiguous stretch of speech attributed to a single adult talker and typed a number into the relevant Praat textgrid interval.

Figure 1. Annotation scheme used by human analysts to identify human communicative vocalizations. The top of the display shows the waveform and spectrogram. Textgrid tiers provided for the following information (top to bottom): (1) The Analyzed Intervals tier indicated sampled audio portions (given with a ‘y’), (2) The Conversational Blocks tier depicted starts and ends of conversational blocks (e.g., AIOCM for adult male with target child) and pause units, (3) The Segments tier depicted LENA’s segment level ADEX code from among its sound categories. Analysts also indicated starting and ending points of human communicative vocalizations for: (4) the paternal caregiver; (5) the maternal caregiver; (6) a child, (7) another adult female, or (8) another adult male. For tiers corresponding to adult speech, i.e., (4), (5), (7), and (8), analysts indicated the addressee (e.g., “T” for child or “A” for adult), and they also typed a number corresponding to the judged number of intelligible words in each adult speech interval. Finally, (9) the Excluded Vocalizations tier was used to mark speech that significantly overlapped with other noises, other speech, or speech like vocalizations and were marked as overlap noise by LENA.

Additional details of the coding procedure ensured that LENA was given “the benefit of the doubt”, e.g., concerning handling of acoustic overlap of talkers, and that minor temporal discrepancies did not count against agreement. First, recall that LENA assigns a single ADEX segment code to each successive chunk of audio. This is potentially problematic for LENA in the case of overlapping sound sources such as overlapped human vocalizations. In these cases, LENA is forced to “choose” between a single talker code (MAN, FAN, CHN, or CXN) or else a multi-talker code, (OLN), which stands for “overlapped speech or noise” during which no adult words are estimated. During OLN intervals, LENA does not increment the Adult Word Count. Recognizing LENA’s classification algorithms might handle such cases unreliably, coders were instructed that, whenever they detected overlapped speech, they should consider LENA’s labels and favor a coding consistent with LENA’s interpretation. In particular, if LENA had given a classification corresponding to a single talker code for overlapped utterances, and the overlapped utterances contained speech from a talker consistent with the single talker code which LENA had indicated, coders were instructed to attribute the overlapped portion to the single talker which LENA has identified by marking the interval on a tier for that talker type. If, on the other hand, LENA had assigned the multi-talker OLN code to the overlapped speech, then coders were instructed to mark the portion of overlapped speech on the “Excluded Vocalizations” tier (tier 9 in Figure 1). Given that OLN codes entailed no increment to LENA’s Adult Word Count, this handling had the effect of ensuring that speech frames identified as consisting of overlapped human vocalizations which were coded as OLN were essentially not treated in our analysis as speech (since they were not attributed to a single adult male, adult female, or child talker, consistent with
LENA’s handling). Second, to further advantage LENA and speed coding, analysts copied the temporal boundaries of LENA’s ADEX codes by default to mark the starts and ends of speech events, only changing those times relative to LENA if LENA was incorrect by more than 100 msec (a value in line with prior estimates of LENA’s temporal accuracy: Ko et al., 2016). This meant that minor (< 100 ms) discrepancies that LENA may have had with the actual start or end of vocalization did not count against LENA in our agreement quantification algorithms.

Table 2. Types of analyses assessing agreement between classifications by humans and by LENA for a given 100 msec audio frame.

<table>
<thead>
<tr>
<th>Analysis #1: Female Adult vs. Male Adult vs. Child vs. Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label source</td>
</tr>
<tr>
<td>Human</td>
</tr>
<tr>
<td>LENA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis #2: Speech vs. Nonspeech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label source</td>
</tr>
<tr>
<td>Human</td>
</tr>
<tr>
<td>LENA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis #3: Adult Speech vs. Everything Else</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label source</td>
</tr>
<tr>
<td>Human</td>
</tr>
<tr>
<td>LENA</td>
</tr>
</tbody>
</table>

Note. Female adult speech refers to a frame which was marked as speech on the Maternal Caregiver or Other Adult Female tier. Male adult speech refers to a frame which was marked as speech on the Paternal Caregiver or Other Adult Male tier.

Analyses of agreement between human and LENA classification. Our general approach to determining when LENA and human coders agreed was to: (i) divide sampled audio into short frames; (ii) determine the human-derived category characterizing each frame; (iii) determine the LENA classification code characterizing each frame; and then to (iv) determine, for each frame, whether the category implied a match between the LENA code and the human-derived category. Accuracy (and error) were then calculated as a percentage of frames showing consistency (or inconsistency) between the LENA code and the human-derived category.

(i) *Divide sampled audio into short frames.* Each textgrid annotating the sampled audio was first divided into a sequence of frames using *Matlab R2017b* (The Mathworks Web-Site
and the mPraat toolbox (Bořil & Skarnitzl, 2016), following prior work (Atal & Rabiner, 1976; Deller, Hansen, & Proakis, 2000; Dubey, Sangwan, & Hansen, 2018a, 2018b; Ephraim & Malah, 1984; Proakis, Deller, & Hansen, 1993; Rabiner & Juang, 1993). A 100 msec frame length was chosen first based on the granularity of LENA segmentation accuracy in prior literature (for instance, Ko et al., 2016); secondly, based on the instructions to human coders regarding the granularity of their decisions when LENA segment boundaries deviated from perceived audio; and finally, based on the observation that 100 msec is one sixth the size of the smallest LENA segment (600 ms) and one twelfth the size of the average segment ($M = 1260$ msec, $SD = 760$ msec), providing a meaningful resolution for sampling LENA’s classification of audio. Frames contained audio outside of sampled audio were discarded.

(ii) Determine the human-derived category characterizing each frame. Next, for each frame, we determined a human label that best characterized that frame (adult male, adult female, child, or other). This corresponded to the label taking up the greatest temporal extent (i.e., 50 msec or more) of the frame. For instance, if 90% of a frame’s temporal extent was identified as an adult male talker and 10% as an adult female talker, the frame was classified as an adult male speech frame. Regions coded by humans as either “paternal caregiver” or “other adult male” were treated as adult male speech, and regions coded by humans as either “maternal caregiver” or “other adult female” were treated as adult female speech (see Table 2). Frames of adult speech (either by a male or female) were characterized as an ‘AD’ or ‘ID’ frame if 50% or greater of the frame’s temporal extent had been annotated as adult-directed or infant-directed, respectively (or neither in the case of pet-directed or self-directed speech).

(iii) Determine the LENA classification code characterizing each frame. Next, a single label derived from LENA segment codes was assigned to each frame, corresponding to the one taking up the greatest temporal extent of the frame (i.e., 50 msec or more).

(iv) Determine, for each frame, whether the LENA classification code implied a match with the human-derived category. We computed several different analyses of agreement based on comparisons between human-derived categories implied by the human labels and LENA classification codes for frames; see Table 2. The first analysis addressed agreement about when speech vocalizations were happening and who was talking; it was based on a four-way category distinction: male adult speech, female adult speech, child vocalization, or other. The second analysis addressed agreement about whether a frame constituted some kind of speech vocalization or not; it was based on a two-way category distinction: speech vs. non-speech. Finally, the third analysis addressed agreement about when adult speech was happening or not; it

<table>
<thead>
<tr>
<th>Table 3. Counts of frames given human analysts’ classifications (rows) and LENA classifications (columns).</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Human classifications</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Totals</td>
</tr>
</tbody>
</table>

Note. Counts in boldface font were considered correct classifications.
was based on a two-way category distinction: *adult speech vs. everything else*. The third analysis was expected to be most pertinent to accuracy of LENA’s Adult Word Count, since this measure is based on the frames classified by LENA as adult speech (i.e., as MAN or FAN). Agreement (or error) was quantified as the percentage of frames classified correctly (or incorrectly), given the category implied by human annotation.

Table 4. Mean classification rates for LENA across families, relative to four-way classification by human analysts.

<table>
<thead>
<tr>
<th>LENA Classifications</th>
<th>FAN</th>
<th>MAN</th>
<th>CHN/CXN</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human classifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female adult</td>
<td>59 (10)</td>
<td>5 (7)</td>
<td>11 (8)</td>
<td>25 (9)</td>
</tr>
<tr>
<td>Male adult</td>
<td>14 (14)</td>
<td>60 (18)</td>
<td>4 (5)</td>
<td>22 (11)</td>
</tr>
<tr>
<td>Child</td>
<td>7 (5)</td>
<td>0 (1)</td>
<td>63 (10)</td>
<td>30 (11)</td>
</tr>
<tr>
<td>Other</td>
<td>4 (2)</td>
<td>3 (6)</td>
<td>10 (7)</td>
<td>82 (8)</td>
</tr>
</tbody>
</table>

Note. The standard deviations across families are given in parentheses. Values in boldface font reflect correct classifications.

Classification accuracy achieved by LENA for identifying and attributing speech to the correct talkers.

Throughout the following, italic font is used to indicate a frame’s classification as assigned by humans. Table 3 shows counts of frames classified by humans as *female adult speech*, *male adult speech*, *child vocalizations*, or *other* in rows; LENA’s classifications of frames are shown across the columns. While there are many on-diagonal entries (i.e., correct classifications), there are many off-diagonal entries (i.e., incorrect classifications). For example, 59% of all *female adult speech* frames were correctly classified by LENA as ‘FAN’, such that, by extension, 41% of *female adult speech* frames were mis-classified; it is noteworthy that 12% of these mis-classifications were misattributions of a *female adult speech* frame to a child talker (CHN or CXN). By contrast, 57% of all *male adult speech* frames were correctly classified as ‘MAN’, such that, by extension, 43% of *male adult speech* frames were mis-classified; however, just 4% of the mis-classified *male adult speech* frames were misattributions by LENA to a child talker (CHN or CXN). These observations preview our finding of an interaction between talker gender (male vs. female) and speech style (infant-directed vs. adult-directed), something discussed below.

Table 4 shows LENA’s classification accuracy as an overall percentage of frames correctly classified by LENA within each family’s recording, averaged across families. Human-identified *female adult speech*, *male adult speech*, *child vocalization*, and *other* frames were classified correctly by LENA at average rates of 59%, 60%, 63%, and 82%, respectively (which corresponded in turn to error rates of 41%, 40%, 37% and 18%, respectively). Nevertheless, LENA’s classification was statistically above chance (i.e., 25%) for frames of each of the four classification categories for all 23 families [adult female: \(t(22) = 15.79, p < .001 \), adult male\(^1\): \(t(21) = 9.25, p < .001 \); child vocalizations: \(t(22) = 18.19, p < .001 \); other: \(t(22) = 36.24, p < .001 \)]. We also used tests of proportions for each family individually to investigate whether LENA’s classification accuracy for the four classification categories was significantly above chance (25%) for that family. For one family (Family 5), classification accuracy for *male adult speech* was statistically at chance levels (\(z = .64, p = .26 \)); male adult speech for this family was more likely to have been mis-classified as female adult speech (27/52 frames) or as child speech (11/52 frames) than to have been correctly classified as male adult speech (just 11/52 frames).

\(^1\) One family did not have adult male speech in the selected audio.
Classifications of ‘speech’: LENA false negative and false positive rates.

Next, we assessed LENA’s accuracy at classifying speech and non-speech frames as ‘speech’ vs. ‘non-speech’ (cf. Table 2). Figure 2A shows a boxplot for LENA accuracy in classifying speech frames across families. Mean accuracy for classifying frames as ‘speech’ was 74%; this corresponded to a false negative rate (i.e., LENA misclassifying speech as ‘non-speech’) of 26% (SD = 7%). Classification accuracy for speech frames varied

Human inter-rater reliability. Inter-rater reliability was assessed through re-coding a total of about 3.6 minutes of audio from each of ten recordings, including 2.4 min of audio from adult conversational blocks and 1.2 minutes from pause units drawn equally from the beginning and end of the recording. For each 100 msec frame within audio selected for the inter-rater reliability analysis, the frame’s classification by each analyst was determined by assigning each frame to a category (male adult, female adult, child, or other) for each coder following the rule described above using the largest portion of the frame’s temporal extent. Cohen’s kappa (Carletta, 1996; Kuhl et al., 1997) was then used to determine agreement between pairs of codes. Further, a value of kappa was calculated to assess the agreement in labeling ID and AD speech within the subset of frames for which the frame had been classified as adult speech in both the original and reliability coding.

Results

Human inter-rater reliability. Our first step was to establish inter-rater reliability for coding by human analysts. Results showed high inter-rater reliability among humans for distinctions of interest. The average κ values indicate very good to outstanding agreement (Breen, Dilley, Kraemer, & Gibson, 2012; Krippendorff, 1980; Landis & Koch, 1977; Rietveld & van Hout, 1993; Syrdal & McGory, 2000). For the four-way classification of frames as adult male, adult female, child vocalization, and anything else (i.e., other), human analysts agreed with mean $\kappa = 0.77$ (SD = 0.08). For the speech vs. non-speech distinction, human analysts agreed with mean $\kappa = 0.67$ (SD = 0.12). For the adult speech vs. everything else distinction, human analysts agreed on whether speech was AD or ID with mean $\kappa = 0.81$ (SD = 0.08). For adult speech frames, human analysts agreed on whether speech was AD or ID with mean $\kappa = 0.90$ (SD = 0.18). Further, accuracy of human word counts showed a strong correlation between the two sets of coded files, $r(8) = .96, p < .001$. This consistent across-the-board agreement suggests the robustness of human judgments about when speech was happening/not happening, who was talking, whether the adults were talking to a child or to an adult, and how many words the adult spoke. The remaining analyses used these human judgments as the basis of determinations of LENA’s accuracy.

Classifications of ‘speech’: LENA false negative and false positive rates. Next, we assessed LENA’s accuracy at classifying speech and non-speech frames as ‘speech’ vs. ‘non-speech’ (cf. Table 2). Figure 2A shows a boxplot for LENA accuracy in classifying speech frames across families. Mean accuracy for classifying frames as ‘speech’ was 74%; this corresponded to a false negative rate (i.e., LENA misclassifying speech as ‘non-speech’) of 26% (SD = 7%). Classification accuracy for speech frames varied
widely, from 53% to 86% across families (corresponding to 14% to 47% false negative rates). Table 5 presents error rates across families for classification analyses, and shows that all families had over 10% error rate for false negatives.

Figure 2B shows a boxplot for LENA accuracy in classifying non-speech frames across families. Mean accuracy for ‘non-speech’ classifications was 82%; this corresponded to a false positive rate (i.e., LENA misclassifying non-speech frames as ‘speech’) of 18% (SD = 8%). Classification accuracy for non-speech frames ranged from 64% to 91% (corresponding to a range between 9% to 36% false positives); Table 5 shows a substantial majority (91%) of families had over 10% error rate for false positives.

The lowest bar for evaluating LENA’s classification relates to whether it performed better than chance. Classification for both speech and non-speech frames was better than chance (50%) by a significant statistical margin across families [speech: t(22) = 17.531, p < .001; non-speech: t(22) = 20.382, p < .001]. Tests of proportions were also calculated for each family individually to investigate whether LENA’s classification accuracy for speech vs. non-speech was above chance for that family. Classification rates for speech vs. nonspeech exceeded chance levels (50%) for all families’ recordings (α = .05).

Figure 2. Box plots showing variability in classification accuracy as a percentage of frames across each family’s recording for LENA classifying human labeled (A) speech and (B) non-speech or as (C) adult speech, and (D) everything else (see Table 2 for how these categories are defined). Data from individual families are shown in scatterplots for each classification. Overlaid numbers identify families’ recordings across analyses, further illustrating variability.

Classifications of ‘adult speech’: LENA false negative and false positive rates. We next assessed LENA’s accuracy at classifying adult speech frames (i.e., frames humans identified as an adult female or adult male talker) as ‘adult speech’ (i.e., FAN or MAN); see Table 2. Figure 2C shows a boxplot for LENA accuracy in classifying adult speech frames across families. Mean accuracy for adult speech frames was 67%, corresponding to a mean false negative rate of 33% (SD = 9%) (i.e., LENA misclassifying adult speech frames as ‘everything else’). Classification accuracy for adult speech varied widely across families, ranging from 45% to 82% (corresponding to a range between 18% to 55% false negative rates). Table 5 shows that all families had over 10% error rate for false negatives.
Figure 2D shows a boxplot for LENA accuracy in classifying frames of everything else across families. Mean accuracy for classifying everything else was 92%, corresponding to a mean false positive rate of 8% (SD = 6%) (i.e., LENA misclassifying everything else frames as ‘adult speech’). Classification accuracy for everything else frames varied from 70% to 97% (corresponding to 3% to 30% false positive rates). Table 5 shows that a substantive minority (17%) of families had over 10% error rates for false positives.

LENA’s classification accuracy was significantly better than chance at classifying both adult speech frames \([t(22) = 8.865, p < .001]\) and everything else \([t(22) = 35.808, p < .001]\). Tests of proportions were calculated for each family individually to investigate whether LENA’s classification accuracy for adult speech vs. everything else was above chance for that family. This analysis revealed that for two families, LENA’s machine classifications were significantly below chance levels of accuracy for ‘adult speech’ classification with \(\alpha = .05\) (Family 10: \(z = -5.09\); Family 18: \(z = -5.19\)). In both of these cases, intelligible frames of live adult speech were frequently miscoded by LENA as noise or recorded content (including OLN, TVN, and FUZ).

This variability across families in adult speech false positive and false negative rates might be less worrisome if there was consistency in LENA’s accuracy within a family’s recording from one time point to the next. We therefore conducted a statistical test of the null hypothesis that there was consistency in LENA’s accuracy levels across our two sampling time points, i.e., no difference in LENA classification accuracy for adult speech between samples drawn from the beginning vs. the end of the day. A mixed effects model with a logit linking function was created to predict accuracy across frames (incorrect frames coded as 0, correct coded as 1; incorrect set as baseline) based on the fixed factor of Time with two levels (beginning vs. end, with beginning set as the baseline) and a random intercept for each family. This statistical test showed that the null hypothesis was not supported. Instead, LENA showed systematically lower accuracy for frames drawn from the end of the day than frames at the beginning of the day \(\text{beginning vs. end,} \quad \beta = 1.90, \quad z = 29.02, \quad p < .001, \quad \text{odds} = 6.7:1\); and end vs. beginning, \(\beta = -1.11, \quad z = -12.65, \quad p < .001, \quad \text{odds} = 0.9:1\). Thus, not only is there a lack of consistency in classification accuracy/error rates for LENA across families’ recordings, but there is a lack of consistency in classification accuracy/error rates within families’ recordings as well. We return to this point in the Discussion.

Effects of talker gender (male, female) and addressee (ID vs. AD) on ‘adult speech’ classification accuracy. The remaining analyses focused on adult speech frames only. Table 6 shows how the gender of
the talker (male vs. female), as well as the addressee (ID vs. AD speech) affected patterns of LENA classification for *adult speech* frames\(^2\). Both ‘FAN’ and ‘MAN’ classifications result in increments to LENA’s Adult Word Count estimates, while frames classified in any other way do not. Values in the third data column, which collapses instances which LENA classified *adult speech* frames as either ‘FAN’ or ‘MAN’, therefore reflect correct classifications as ‘adult speech’ of some type (even if the talker’s gender was mis-classified).

Table 6. Frame counts and percentages of frames classified human-identified adult speech frames as adult speech as a function of talker gender (female or male) and type of addressee (ID vs. AD). Boldface font indicates talker gender, while values in italics reflect LENA’s additionally correctly classifying talker gender.

<table>
<thead>
<tr>
<th>LENA Classifications</th>
<th>FAN</th>
<th>MAN</th>
<th>FAN or MAN</th>
<th>CHN or CXN</th>
<th>NON</th>
<th>OLN</th>
<th>TVN</th>
<th>FUZ or SIL faint</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female adult speech</td>
<td>7280</td>
<td>2391</td>
<td>9671 (72%)</td>
<td>448 (3%)</td>
<td>43 (1%)</td>
<td>1592 (12%)</td>
<td>266 (2%)</td>
<td>906 (7%)</td>
<td>589 (4%)</td>
</tr>
<tr>
<td>Male adult speech</td>
<td>259 (4%)</td>
<td>4138 (70%)</td>
<td>4397 (73%)</td>
<td>59 (1%)</td>
<td>0 (0%)</td>
<td>337 (6%)</td>
<td>193 (3%)</td>
<td>482 (8%)</td>
<td>529 (9%)</td>
</tr>
<tr>
<td>Totals</td>
<td>7539</td>
<td>6529</td>
<td>14068</td>
<td>507</td>
<td>43</td>
<td>1929</td>
<td>459</td>
<td>1388</td>
<td>1118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human classifications</th>
<th>Female adult speech</th>
<th>Male adult speech</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>36463 (62%)</td>
<td>1405 (2%)</td>
<td>37868 (64%)</td>
</tr>
<tr>
<td>AD</td>
<td>6241 (20%)</td>
<td>16892 (36%)</td>
<td>23133 (76%)</td>
</tr>
<tr>
<td>Totals</td>
<td>47204</td>
<td>18297</td>
<td>61001</td>
</tr>
</tbody>
</table>

Note. Percentages of frames are rounded to the nearest percent. Values in boldface reflect LENA’s correctly classifying a human-identified adult speech frame as adult speech, regardless of how it classified.

The patterns in Table 6 suggest that classification accuracy of *adult speech* may indeed depend on both talker gender and the addressee (ID vs. AD). For instance, for female adult talkers, a higher percentage of frames was accurately classified *in AD* (72%) than *in ID* (64%), with the latter condition involving a lot of misclassifications as a child (14%). Figure 3 shows rates of correct classification of *adult speech* frames as ‘adult speech’ for each family broken out as a function of Talker Gender (female, male) and Addressee (AD, ID). There is tremendous variability in how accurately *adult speech* was detected across families’ recordings, and this accuracy varies as a function of the gender and addressee.

To construct a statistical test of whether there were systematic effects of Talker Gender or Addressee (ID vs. AD) on accuracy of classification of *adult speech* frames, we constructed a mixed effects

\(^2\) Frames identified as *adult speech* but as directed to individuals other than an adult or child, such as pets or oneself, were excluded.
logistic regression model with a binomially-distributed dependent variable of accuracy of classification as ‘adult speech’ (Agresti, 2002; Barr et al., 2013; Jaeger, 2008; Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017; Quené & Van den Bergh, 2008). This statistical approach shows robustness to imbalanced numbers of data points across grouping factors, as well as to missing observations (Th. Gries, 2015). The dependent variable value for each frame was set to 0 if that frame’s LENA classification for ‘adult speech’ was incorrect (i.e., if LENA classified the adult speech frame as anything other than FAN or MAN), and as 1 if its classification for ‘adult speech’ was correct (i.e., if LENA classified the frame as either FAN or MAN, even if it got the gender wrong). The model (implemented in R; Bates, Mächler, Bolker, & Walker, 2015; R Development Core Team, 2015) included categorical predictor variables of Gender (female vs. male, with female set as the baseline) and Addressee (AD vs. ID, with AD set as the baseline), as well as their interaction, plus a random intercept term for the effect of each family.3

As shown in Table 7, statistical modeling revealed statistically significant effects of both Gender and Addressee (and a significant interaction between these) on LENA’s ability to classify adult speech frames accurately as ‘adult speech’. The significant effect of Addressee (p < .001) indicates better classification as ‘adult speech’ for adult female AD speech (i.e., the baseline, M = 68%, SD = 15%; odds of correct classification ~2.4:1 [=exp(0.855)]) than for adult female ID speech (M = 63%, SD = 12%; odds of correct classification ~1.8:1 [=exp(0.855)*exp(-0.261)]). The significant effect of Gender (p < .001) indicates there was better classification for adult male AD speech (M = 76%, SD = 19%; odds of correct classification ~2.7:1 [=exp(0.855)*exp(0.129)]) than adult female AD speech (odds of 2.4:1 [=exp(0.855)]). Finally, the significant interaction between Gender and Addressee (p < .001) indicates that Addressee did not affect equally adult male and adult female speech. Rather, adult male ID speech had an odds of correct classification of about 3.3:1 [=exp(0.855)*exp(0.129)*exp(-0.261)*exp(0.477)], which was significantly more accurate classification than would be expected based on the independent effects of ID addressee on

3 Random slopes were not included in the model, due to the fact that not all families had observations for both levels of the two factors.
female speech and the effect of being male rather than female. This meant that adult male ID speech was classified correctly as ‘adult speech’ almost twice as often as expected based on independent effects of being ID and male (3.3/1.8 ≈ 1.83). In summary, accuracy of classifying adult speech frames as ‘adult speech’ was significantly affected by both the gender of the talker, and whether the speech was AD or ID.

| Gender classification accuracy: Effects of addressee (ID vs. AD). | **Estimate** | **St. Error** | **z** | **Pr(>|z|)** |
|---|---|---|---|---|
| (intercept) | 0.855 | 0.084 | 10.202 | <.001** |
| Addresssee | -0.261 | 0.024 | -10.828 | <.001** |
| Gender | 0.129 | 0.035 | 3.662 | <.001** |
| Addresssee:Gender | 0.477 | 0.041 | 11.695 | <.001** |

Note. ‘**’ indicates statistical significance at $\alpha = .001$

Table 7. Statistical model of effects of addressee and speaker Gender on accuracy of classification of adult speech frames as ‘adult speech’ (i.e., FAN or MAN).
Figure 4. Effects of Talker Gender (Female, Male) and Addressee (AD, ID) on accuracy of gender classification within the subset of human identified adult speech frames correctly classified as adult speech by LENA. Boxplots and associated scatter plots highlight mean accuracy and variability across families (indicated by numbers in the scatterplot).

Accuracy in LENA’s Adult Word Count measure. Figure 5 presents the percent over- or under-estimation of LENA’s Adult Word Count compared to the word count from human listeners for sampled audio. A value of 100% means LENA’s Adult Word Count perfectly agrees with human word count. The mean percent of over-estimation for LENA Adult Word Count was $M = 147\%$, indicating an average 47% overestimation in word count by LENA relative to human word counts. The median overestimation was 31% (the difference between the mean and the median is largely driven by 3 families – excluding these families generated a Mean = 29% overestimation, a value in line with the median). LENA word counts ranged from 83% to 310% of human word counts (SD = 56%). Table 5 shows that 22/23 families had greater than 10% difference between LENA’s Adult Word Count and human word counts (either over- or under-estimation). Surprisingly, for 7/23 (30%) of the families, the over-estimation was greater than 50%. Nevertheless, in keeping with prior findings, LENA Adult Word Count and human adult word counts were correlated with one another [$r(21) = .86, p < .001$], meaning that both the human count and LENA

Table 8. Statistical model of effects of Addressee and speaker Gender on accuracy of classification of adult speech frames according to the correct gender (i.e., adult female as ‘FAN’ and adult male as ‘MAN’).

| Estimate | St. Error | z | Pr(>|z|) |
|---------------------------|-----------|---------|----------|
| (intercept) | 1.851 | 7.911 | < .001 **|
| Addressee | 2.126 | 20.626 | < .001 **|
| Gender | 1.438 | 46.053 | < .001 **|
| Addressee:Gender | -4.124 | -49.701 | < .001 **|

Note. ‘**’ indicates statistical significance at $\alpha = .001$

4As pointed out in the Introduction, correlations are not optimal tools for comparing methods. However, the correlation is provided for comparison with values from prior LENA reliability studies (see Table 1).
Figure 5. Box plots showing variability in error between LENA Adult Word Count and human adult word count. Values represent the percent of over or under-estimation by LENA (LENA / Human) such that the dashed line at 100% represented perfect agreement between LENA and human word counts. Values below this line represent underestimation and values above represent over-estimation.

count tended to rise together, in spite of the overestimation by LENA. Similarly, the ranking of participants based on LENA’s Adult Word Count and human word counts showed a significant correlation $r_s(21) = .46, p = .029$ suggesting that the ranked order of word counts from humans and LENA were somewhat consistent despite the large and variable errors we observed.

Relationship between classification accuracy and Adult Word Count. Given that the Adult Word Count is preceded by, and depends on, the classification step, we expected that accuracy for classifying frames as ‘adult speech’ would significantly influence accuracy of LENA’s Adult Word Count. However, no prior published study has tested or shown such a dependency. To test this, we constructed a generalized linear model in R (using glm) to test the extent to which, across families, the percentage of correct classifications of adult speech and everything else frames (or their interaction) predicted the percentage of over- or under-estimation for the LENA Adult Word Count (see above). All variables were scaled and centered. Table 9
shows the results of this statistical modeling. Accuracy of classification of *everything else* frames significantly predicted Adult Word Count accuracy, with a large effect size ($r = -0.77$). There were no other significant effects; we return to this point in the Discussion.

Given this finding relating overall *everything else* classification accuracy to overall Adult Word Count error, we sought to identify how classification accuracy interacted with the additional factors of gender and addressee on a frame by frame basis. Therefore, a generalized linear mixed effect regression model was constructed to predict the continuous dependent variable of signed per-frame Adult Word Count error. The model included categorical predictor variables for each adult speech frame consisting of Talker Gender (with female as the baseline), Addressee (ID vs. AD, with AD as baseline), Classification Accuracy (incorrect vs. correct, with incorrect as baseline), and all possible interactions (see Method). The model included a random intercept-only effect term to account for clustering by family. This model was reduced through iterative elimination of non-significant interaction terms starting with the three-way interaction until a likelihood ratio test revealed that the next simpler model was a significantly worse fit. We assumed convergence of the t and z distributions.

The final model (Table 10) showed that Adult Word Count accuracy was significantly affected by Classification Accuracy, which had a large effect on the amount of per-frame signed error; there were also smaller, but still significant, effects of Talker Gender and Addressee, and significant interactions between Talker Gender and Addressee and between Classification Accuracy and Gender. A value of “0” for per-frame signed error would indicate perfect agreement in proportional word counts by humans and LENA. First, incorrectly-classified AD frames engendered more negative signed error ($b_{\text{female}} = -0.3$, $b_{\text{male}} = -0.28$), that is, a greater deviation in the direction of under-counting, than incorrectly-classified ID frames ($b_{\text{female}} = -0.23$, $b_{\text{male}} = -0.24$). Moreover, correctly-classified frames engendered positive signed error, i.e., over-counting, of a magnitude that depended on the Talker Gender and Addressee. Correctly-classified AD

5 A plot of *everything else* classification accuracy against Adult Word Count classification accuracy suggested that Family 22 was something of an outlier. To test whether Family 22 was driving significance for the generalized linear model reported in Table 10, we re-ran the model but removing *Family 22*. The results were similar. The statistically significant effect of *everything else* classification accuracy on LENA Adult Word Count accuracy persisted (β estimate = -0.523, st. error = 0.20, t = -2.61, p = .018), with no other significant effect or interaction, as before. Further, the effect size for the relationship between *everything else* classification accuracy to Adult Word Count accuracy remained strong ($r = 0.58$). These results support the robustness of the statistical relationship between *everything else* classification accuracy and Adult Word Count accuracy and suggest the results are not due to an outlier.

6 The architecture of LENA’s algorithms for Adult Word Count calculations entail that Adult Word Count is only incremented when stretches of audio are classified as ‘adult speech’, as opposed to any kind of ‘speech’ in general. Consistent with this, a generalized linear model was constructed for LENA Adult Word Count classification accuracy with predictor variables of accuracy of speech and nonspeech classification (and their interaction); neither variable, nor the interaction, showed a significant effect (all p’s > 0.58). This additional modeling underscores the dependency of LENA’s Adult Word Count classification accuracy on ‘adult speech’ classification decisions *per se*, rather than all speech (or speech-like) vocalization decisions.
frames engendered positive signed error (\(b_{\text{female}} = +0.06, b_{\text{male}} = +0.05\)) which was nevertheless smaller in magnitude than the error of ID frames (\(b_{\text{female}} = +0.13, b_{\text{male}} = +0.09\)).

Taken together, these results reveal that LENA showed systematically more error in detecting and correctly classifying speech of adult females than speech of adult males. Even under conditions when LENA had accurately classified frames of adult talkers as ‘adult speech’, LENA was less accurate in registering and counting words of adult females than in counting words of adult males, showing systematically greater undercounting of words of adult females than words of adult males. Finally, there were significantly higher error rates for the LENA Adult Word Count when adult females were directing their utterances to children (i.e., ID condition), compared with any other condition.

Discussion

This study presented an independent assessment of reliability in classification and Adult Word Count from LENA at-home recordings. Independent assessment (i.e., analyses not funded by the LENA Foundation) is a requisite for clinicians and researchers to use this tool with confidence. The current analysis focused on accuracy of audio classification by LENA, accuracy of LENA’s Adult Word Count metric, and the implications of classification errors on Adult Word Count estimates. Our focus on these metrics was due to the developmental importance of quantity and quality of environmental speech and the importance of child directed speech for language development (e.g. Hoff & Naigles, 2002; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991; Shneidman et al., 2013). LENA’s automatic analysis of Adult Word Count has become widely used to assess the quantity and quality (assessed through addressee) of speech in children’s environments (Romeo et al., 2018; Weisleder & Fernald, 2013). Given the shift towards its use, we sought to provide an independent evaluation of LENA by having human analysts (i) identify when a man, woman, or child produced a speech vocalization; (ii) indicate, for adult talkers, whether the utterance was child-directed or adult-directed; and (iii) count the number of intelligible adult words. A rhetorical question is therefore posed: What amount of error is ‘acceptable,’ for both research and clinical purposes, for ensuring standards of validity and reliability in order to justify reliance on automatic, machine-based decisions about the amount of language input in a child’s environment?

LENA showed variable – and in some cases quite large – errors in classifying audio as the correct talker (man, woman, or child). The average false negative rate for \textit{adult speech} frames (i.e., frames identified by human coders as adult speech but classified by LENA as not ‘adult speech’) was 33%; this error ranged from a low of 18% missed frames to a high of 55% missed frames. For all 23 families in our sample (i.e., 100%), LENA was in error on more than 10% of intelligible \textit{adult speech} frames. Classification of audio appears to be highest (92% accuracy) for LENA correctly identifying audio that does not contain adult speech as not adult speech (\textit{everything else}). In contrast, human identified adult female speech was correctly identified by LENA as female speech only 59% of the time (with a 10% standard deviation).

| \(\beta\) | Estimate | St. Error | t | \(\text{Pr(>|t|)}\) |
|---------|----------|-----------|---|------------------|
| (intercept) | -0.302 | 0.009 | -32.07 | < .001** |
| Address | 0.070 | 0.002 | 34.12 | < .001** |
| Gender | 0.022 | 0.003 | 6.13 | < .001** |
| Accuracy | 0.363 | 0.001 | 245.98 | < .001** |
| Address:Gender | -0.028 | 0.003 | -8.03 | < .001** |
| Gender:Accuracy | -0.028 | 0.003 | -10.42 | < .001** |

\(**\) indicates statistical significance at \(\alpha = .001\).

Table 10

Statistical model of effects of Address, Gender and Classification Accuracy on fractional Adult Word Count Error per frame.
Further, both human-identified gender (male vs. female) and addressee (ID vs. AD) significantly affected the accuracy of LENA’s audio classification. LENA was overall statistically better at classifying frames of adult speech as ‘adult speech’ for male voices compared with female voices. LENA showed especially high error at classifying adult female speech in ID condition, in which LENA disproportionately classified frames as a child talker (and thus not as adult speech). Even when LENA accurately identifies audio as adult speech, gender and addressee still affect accurate classification of talker gender. Within correctly classified adult speech frames we found that accuracy for ID speech was high for women but low for men, whereas AD speech accuracy was consistent across genders. Thus, even in cases when LENA accurately identifies the amount of adult speech, variability due to addressee and gender may lead to attribution of adult word count to the incorrect gender.

We also showed that these systematic classification errors significantly impacted the accuracy of LENA’s Adult Word Count. On average, LENA overestimated Adult Word Counts by 47% (median of 31% overestimation). The amounts of error ranged from undercounting words by 17% to over-counting words by 208%. The correlation observed between human word counts and LENA’s AWC ($r = .86$) was well within the range of values reported for prior studies (see Table 1). The variability in error for Adult Word Count estimates we identify are concerning and this significant correlation obscures the problematic over-estimation by LENA we observed, highlighting the inadequacy of correlations for assessing reliability.

This is the first paper to have identified the speaker gender and intended addressee as variables that directly affect accuracy of segment classification and Adult Word Count. Gender and addressee both interacted with classification accuracy to predict word count error. Interestingly, the relative amount of error across ID vs. AD conditions depended on whether frames had been correctly classified as adult speech. In particular, when human identified adult speech frames were missed by LENA, the Adult Word Count showed greater error (i.e., more undercounting) when frames were AD compared with when they were ID. However, when adult speech frames were correctly classified, the Adult Word Count showed greater error (i.e., more overcounting) when frames were ID compared with when they were AD. Further, frames of male adult speech generated significantly less error in Adult Word Count than frames of female adult speech for 3 out of 4 conditions; only inaccurately classified ID frames showed less error for female than male speech. The patterns we identified suggest that LENA misattributes or misses Adult Words as a function of the talker’s gender and speech style in part due to systematic errors in classification, and this is especially problematic for ID speech from adult female speakers.

Therefore, a main finding was that adult females talking in ID register were particularly likely to have their speech ‘missed’ (i.e., LENA failed to detect it) for purposes of Adult Word Count; such speech was disproportionately attributed to children. LENA very rarely misattributed the gender of female adult talkers who were addressing children (ID speech). In other words, when female ID speech was accurately identified to be from an adult (as opposed to mistakenly attributed to a child), this adult speech was assigned to the correct gender (‘female’) with high accuracy. Adult male speech showed a generally opposite pattern – better detection accuracy but worse gender classification. That is, adult male speech was much more readily detected as ‘adult speech’ (and tended to be more faithfully reflected in Adult Word Counts), but gender classification was quite poor, with male ID speech was mis-attributed to females 14 times more often than the reverse (female adult ID speech being attributed to a male adult).

Across all results of classification and Adult Word Count accuracy we see striking variability between families. Some of the variability across families in the accuracy with which adults’ speech was classified as ‘adult speech’ depended upon the gender and addressee of the speaker. Speakers of a given gender differ in their typical fundamental frequency ranges; for instance, the distribution of mean F_0 values for adult female speakers – even in AD register – ranges from statistically quite low and overlapping with higher-pitched males, to statistically quite high and overlapping with the typical F_0 values of children (Hanson, 1997; Hanson & Chuang, 1999; Iseli, Shue, & Alwan, 2006). Classification of speech given this variability is further complicated by variable usage of ID and/or AD registers between speakers. Given prior research suggesting a dependency of LENA’s classification accuracy on F_0
(VanDam & Silbert, 2016), we speculate that female talkers who had naturally have lower F0 may have produced speech which was better detected than female talkers with higher F0.

Varying degrees of competing environmental noise sources presumably also account for some of the variability in classification error. Classification errors where TV or young siblings are misclassified as adult speech could significantly alter Adult Word Count accuracy, a concern that may underlie our finding that the rate of correct classification of *everything else* frames in the ‘adult speech’ analysis significantly predicted Adult Word Count error. In keeping with this idea, we observed that for two of the families with more than 100% overestimation in LENA’s Adult Word Count – relative to the human word count – the error seemed to have been driven by misclassification of TV, while in the third case it appeared to be due to misclassification of sibling speech as adult speech. Overestimation by LENA has been observed in prior studies due to TV (Xu, Yapanel, et al., 2009), and during activities in the home (Burgess et al., 2013; or in Table 2 of Soderstrom & Wittebolle, 2013).

There were several limitations of our study. First, sampled audio came specifically from the beginning and end of the day-long recordings; this could be considered a strength and/or a weakness. These times were chosen to provide a fairer test of LENA’s measurement of the home environment because family members were likely to be at home engaging with the child in routine activities. In addition to providing a sample that we thought would provide consistency across families, it allowed us to compare accuracy across multiple times of the day. It also allowed coders to have context necessary for identifying addressee. Our samples also included audio judged by LENA to have adult speech, plus random samples of portions judged by LENA to have no near-field adult or child vocalizations, allowing estimation of false negative rates. Given the sampling approach, results from our sampling method are representative of LENA’s performance early and late in children’s days. The activities and genders of the speakers in these samples may not be representative of the entire day – for example, there may be more male speech in the selected samples. We did not randomly sample from the entire recording – e.g., times when the children might have been in noisy daycare environments, or in cars on the freeway. It is unclear whether such sampling would yield worse or better accuracy estimates. It should be noted that other studies – including the well-cited study by Xu et al. 2009 – used non-random sampling methods.

Another limitation is that our coding system was designed to identify only adult speech and child speech (or speech-like vocalizations), rather than any other kinds of audio sources. While the coding system permitted us to efficiently assess specifically what we cared about – LENA’s accuracy at identifying speech vocalizations and Adult Word Count – it nevertheless left us unable to assess other reasons why LENA may have missed speech vocalizations, or incorrectly classified audio as speech vocalizations when it was not. The extent to which some classifications decisions show ceiling effects while others show extensive variability across families demonstrates the strength of our coding system; however, we cannot determine whether TV might have been a frequent source of error for LENA.

Moreover, the fact that we included children with a variety of hearing statuses is both a strength and a limitation. Assessing available families’ recordings regardless of hearing status was undertaken as a specific targeted goal of our study, due to our need to be able to generalize LENA’s accuracy across our heterogeneous population with a variety of hearing statuses. We therefore viewed this as a strength, because the results were not dependent on any particular hearing status; however, our study was not designed to assess the effects of hearing status, which would have involved an entirely different design (e.g., matching groups on potentially extraneous variables, and larger samples for each hearing status).

Finally, due to our overarching research interest in variability in language environment provided by adults, our study was designed to analyze adult speech classification and Adult Word Count accuracy. It was not designed to analyze other LENA metrics such as conversational turns or child vocalization counts. Nevertheless, our findings that females talking in ID speech register were often misclassified as children, where this misclassification happened significantly more often than when females were talking in an AD speech register should give users of child vocalization LENA metrics pause. Likewise, results from this study provide reason for concern about LENA’s conversational turn counts, given that in conversations between a mother and a child, mothers can often be expected to use an ID register. Our
classification results therefore suggest that LENA may significantly misrepresent the count of turns, a topic we are investigating in ongoing studies.

Despite these limitations, the findings reported here raise concerns for researchers making theoretical claims based on individual differences from LENA estimates of word counts. First, our findings of systematic error in audio classification for adult female speech in ID register raises concerns for research relying on LENA defined segmentation to select audio for analysis (e.g. Ko et al., 2016; Seidl et al., 2018) especially if infant-directed female speech is of interest. Furthermore, our findings that Adult Word Count is of variable accuracy across families should give pause to a class of studies that rely on raw reports of Adult Word Count to make conclusions (e.g. Irvin, Hume, Boyd, McBee, & Odom, 2013; Marchman et al., 2017; Sacks et al., 2014; VanDam et al., 2012). Our finding that this metric was of variable accuracy across families suggests that individual differences in the Adult Word Count metric in such studies may reflect the actual speech environment or may represent measurement error between families. Taking steps to find portions of audio across recordings that are as similar as possible (such as the hour with the most recorded vocal interaction as in Romeo et al., 2018) may minimize the observed variability. Similarly, using LENA to identify samples likely to contain speech and then transcribing those samples (Garcia-Sierra, Ramirez-Esparza, & Kuhl, 2016; Oller et al., 2010; Ramirez-Esparza et al., 2014) seems to be a well-supported approach based on our results. Our finding that classification and Adult Word Count accuracy in each frame are significantly affected by gender and addressee (with an ID or AD register) presents theoretical concerns for research making claims specifically about infant directed speech or about the roles of male or female caregivers based solely on LENA derived metrics. For example, a methodological approach in a recent study (Weisleder & Fernald, 2013) classified 5 minute portions of LENA recordings as infant directed or adult directed. The LENA-generated Adult Word Count within each portion was then binned as either ID or AD. Our results suggest that such binning is problematic given systematic differences in Adult Word Count error rates for ID versus AD speech. The issues highlighted here are theoretically problematic for researchers making claims about individual differences between children in the LENA Adult Word Count metric, especially when the size of those differences are within the range of LENA’s measurement error.

Clinicians should also be aware of the implications of our results. If the quantification of a speech environment LENA reports is inaccurate, then clinical guidance will correspondingly be misguided. This is especially concerning given the widespread use of LENA as a clinical assessment tool, such as in the Providence Talks city-wide language exposure intervention for at-risk children (Talbot, 2015; Wong, Boben, & Thomas, 2018). Clinical intervention requires working with individual families to determine what speech the child is hearing (i.e. Pae et al., 2016; Suskind, Graf, et al., 2016; Suskind, Leffel, et al., 2016; Zhang et al., 2015). Given the variability across families observed in the present study, the guidance clinicians offer may be distorted based on factors such as the register that mothers use or the gender typicality of their speech when speaking to their children. That the inaccuracies are unpredictable a-priori across families compounds the problematic clinical implications of our present findings. A worst case scenario suggested from our results is that undercounting in ID female speech could lead female caretakers to appear to clinicians to provide less speech than they actually do provide. However, shifting to less pronounced (more AD like) speech would lead to female speakers getting more credit from clinicians despite the speech being less helpful for children learning language. These concerns – and identifying solutions to address them – should be a priority for anyone focused on clinical interventions.

Overall, these findings suggest that relying solely on LENA’s Adult Word Count to infer who is talking, and how much they are talking, is not a best practice for either clinical use or research. These findings cast doubt on the value of LENA-generated metrics as a basis of clinical recommendations for individual families or for use in individual-differences research – where these data on LENA’s unreliability have prompted our research team’s return to hand-coding of child language environments. LENA’s accuracy varies greatly from family to family, or from one time to another. Much adult speech that is intelligible to humans is missed by LENA, especially female infant-directed speech. If the goal is to use a very large set of recordings to identify general trends from correlations, then LENA may be a reasonable tool for this purpose. However, these data provide evidence relying solely on LENA’s Adult
Word Count to infer the amount of language spoken by caregivers in children’s home environments is not a best practice, since doing so may lead to invalid clinical judgments and/or research conclusions.
References

Soderstrom, M., & Wittebolle, K. (2013). When do caregivers talk? The influences of activity and time of day on caregiver speech and child vocalizations in two childcare environments. PLoS One, 8(11), e80646. doi:10.1371/journal.pone.0080646

