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Abstract 

Accurate estimates of F0 are essential for modeling how pitch 
variation is used as an informative cue to linguistic structure. 
Multiple challenges exist for estimation and valid statistical 
modeling of F0 variation. First, certain speech styles, such as 
infant-directed speech, can involve dramatic pitch variation 
across utterances. Second, non-modal phonation can cause 
spurious F0 values. Third, F0 samples are not independent of 
one another, leading to issues with validity in applying 
generalized linear mixed effect models (GLMMs). To address 
these problems, we propose a comprehensive framework for 
accurate F0 estimation and sampling to model prosodic 
variation. Our method involves segmentation of speech into 
utterances, followed by determination of speaker- and 
utterance-specific pitch range parameters. Regions of non-
modal phonation are identified, ensuring that portions of speech 
leading to spurious F0 values are rejected early. Next, F0 
stylization at the utterance level ensures robustness to 
microprosodic variation. Finally, F0 turning points (e.g., local 
F0 minima and maxima) are extracted; these are linguistically 
significant “control points” in F0 contours connected by 
monotonic interpolations. This overall approach not only 
ensures accurate F0 estimates, but critically overcomes the 
problem of non-independence of successive samples for valid 
statistical treatments within GLMMs. 

Index Terms: Fundamental frequency estimation, F0 contour 
stylization, generalized linear mixed effect models (GLMMs) 

1. Introduction 

Speech carries segmental and suprasegmental cues which 
provide listeners with a wide range of contextual and indexical 
information, such as the intended message, the speaker’s age, 
gender, speech style, dialect, accent, emotional expression, and 
attitudes. Fundamental frequency (F0) facilitates the perception 
of much of this information [1]. Listeners incorporate local and 
global F0 fluctuations into perception of words, phrases, and 
utterances, using this variation to understand syntactic structure 
and meaning [2]–[4]. Even at an early age, dynamic use of F0 
in infant-directed speech (i.e., motherese) is important to 
encourage infants’ attention to speech, helping caregivers 
engage them and boosting their language development [5]. 
Refining the procedures in place to study this important 
acoustic cue is therefore a top priority in the field. In the present 
work, we propose a procedure for identifying reliable estimates 
of F0 in utterances despite non-modal phonation, using these 
values in a stylization process that abstracts F0 contours and 
allows the identification of linguistic control points. These 
control points (e.g., local F0 minima and maxima) provide 
independent observations of F0 that overcome the non-

independence problem that is a known obstacle for using F0 data 
in generalized linear mixed effects models (GLMMs).  

1.1. Challenges to F0 Estimation 

Despite its importance, accurate and reliable modeling of 
F0 is still challenged by issues such as non-modal phonation, 
where speakers either intentionally or unintentionally introduce 
irregularities in voiced segments. These irregularities may 
result from disordered phonation [6]–[8], harsh or hoarse 
voicing [9], [10], or simply from  intentional variations such as 
creakiness (glottalization) or breathiness [11]–[13]. These 
sources of variability in F0 can negatively impact the accuracy 
of F0 estimation. For example, the F0 values extracted from 
these contexts often result in unwanted artifacts such as F0 
halving or F0 doubling. Fundamental frequency estimation can 
also fail due to the presence of noisy components during 
breathy phonation [14]. Non-modal phonation during 
vocalization – whether from intentional or disordered sources – 
poses a major challenge to algorithms of F0 extraction. 
Therefore, reliable estimation of F0 must ideally include a 
strategy for pre-identification and exclusion of non-modal 
phonation from further analysis, reducing the burden on post-
processing. 

The accuracy of F0 extraction also relies on a set of 
parameters that must be adaptively adjusted based on the 
acoustic qualities of the analyzed vocalization [15]. A robust 
autocorrelation method of F0 extraction is implemented in 
Praat  [16]. Accurate F0 extraction in this software depends on 
aligning pitch parameters to the specific features of the 
analyzed speech. Vocalization patterns are prone to a wide 
range of variability due to anatomical and personal habits. 
Given this variability, identifying the range and variation in the 
minimum and maximum pitch must be specific to each 
speaker’s voicing behavior.  

The importance of pre-processing the speech signal to 
identify optimal speaker-specific values for these parameters 
during F0 extraction was demonstrated by Keelan et al. [15]. 
They compared five F0 extraction algorithms – auto correlation, 
cross correlation, sub-harmonic summation [16], the robust 
algorithm for F0 tracking (RAPT) [17], and SWIPE’ [18]. They 
showed the key role of speaker-specific F0 parameter 
optimization in improving accurate F0 estimation. Moreover, 
the F0 dynamics across words and utterances during 
conversational speech varies within individual and across 
contexts. Therefore, it follows that an utterance-by-utterance 
and speaker-by-speaker parameter optimization strategy is 
required to appropriately deal with variability in pitch range, 
which is especially challenging in infant-directed speech. One 
way to overcome this issue is to identify and pre-define the 
optimum pitch parameters based on speaker’s phonatory 
patterns and acoustical properties of speech contexts. This is a 
critical step in enhancing the reliability and validity of pitch 



extraction. The role of this parameter optimization becomes 
more important when F0 varies dramatically across stretches of 
time, such as the case of infant-directed speech.  

1.2. Non-independence of successive F0 values 

Whereas the technical challenges to F0 extraction can be 
overcome procedurally, the extraction of raw F0 values does not 
necessarily provide linguistically meaningful information. 
Crucially, these raw F0 values are not independent observations 
[19]–[21]. Speakers adjust their vocal fold gestural patterns 
over multiple timescales, from short syllabic units to longer 
utterance-level intervals. This dynamic change in phonation 
creates various intonational structures, forming syllabic, lexical 
and phrasal constituents [2], [22]. The temporal variations of F0 
are usually characterized by two parameters (local minima or 
maxima timing and the change between consecutive high and 
low F0 turning points), which provide substantial information 
for decoding a variety of linguistic, expressive, and organic 
information [2], [23].  

The first parameter – the timing of local F0 minima and 
maxima (i.e. turning points) where the slope of F0 roughly 
changes from increasing to decreasing or vice versa – can be 
thought of as the identification of linguistically significant 
“control points”. Considerable empirical evidence now 
suggests that the type, alignment, and scaling of F0 turning 
points are broadly linked to distinctions in linguistic meaning 
[24]–[26]. These points are sparsely distributed in utterances 
and are connected by monotonic interpolation functions [27], 
[28]. Data reduction steps which prioritize identification of 
turning points and elimination of interpolations between them 
therefore is a valid means of addressing the problem of non-
independence of successive F0 samples, since these points 
reflect linguistic planning on the part of the speaker. The F0 
values that remain after such data reduction steps can therefore 
provide a window into dynamic communicative use of F0; 
importantly, these values can be used in GLMMs due to the 
resolution of non-independence in successive F0 samples, a 
significant contribution of the present work. The second 
parameter is the frequency differences between consecutive 
high and low F0 salient turning points.  

A reliable method for modeling F0 fluctuation must reduce 
the continuous information in the F0 contour (i.e., F0 

stylization) to more linguistically relevant syllable level and 
utterance level information that models word and phrasal 
prominences. An effective F0 stylization approach is an 
important step in identification of true minima and maxima as 
acoustic markers of vocal targets in the F0 contour [29]. Such 
stylization is especially important in cases such as motherese, 
where F0 dynamics directly impact infants’ language 
development. By stylizing F0 based on the local extremes 
within each syllable, and then identifying global extremes 
across utterances, we can reduce the continuous F0 contour to a 
sequence of independent observations.     

1.3. Using F0 in Generalized Linear Mixed Effects 
Modeling 

In order to accurately model the influence of F0 variation 
on various psycholinguistic variables, it is also important to use 
appropriate statistical analyses. Generalized linear mixed 
effects models (GLMMs) have recently been promoted as 
providing statistical models that can account for extraneous 
variance from multiple random sources, as well as fixed effects 
of independent variables [30], [31]. Barr thoroughly discussed 

how treating non-independent observations as independent can 
result in underestimation of standard errors, which 
subsequently can bring inflated Type I error [31]. To conduct a 
valid statistical analysis without encountering this issue, a 
GLMM can be built on F0 minima and maxima as independent 
observations instead of using the non-independent 
measurement of successive F0 samples on the millisecond scale 
[31]. GLMMs can be used to model F0 variations both at the 
syllabic timescale, based on extrema derived from stylization of 
raw F0 within each vowel phones, and identifying turning 
points on the stylized F0 track within each utterance as 
independent observations. These minimum and maximum F0 
values (extrema) that correspond to turning points in the F0 
contour are linguistically important. 

This study proposes an extensible framework that provides 
accurate and reliable F0 extraction and a F0 contour modeling 
method by addressing the issues identified above. The present 
work proposes applying GLMM on the independent 
observations derived from local (syllable-level) and global 
(utterance-level) turning points, providing a more precise 
model of F0 over time. The F0 extraction in the present study is 
based on the idea that both local and global patterns of F0 
alternations carry substantial linguistic information essential for 
decoding the utterance meaning. Our proposed framework 
represents both macroprosodic and microprosodic structures in 
utterances which are important in carrying linguistic 
information  [39]. This approach is critical to a comprehensive 
understanding of how intonational patterns in motherese speech 
influence infants’ language outcome.   

2. Proposed Framework for F0 
Characterization 

To robustly and reliably characterize temporal fluctuation of F0, 
we developed a new framework that addresses the challenges 
discussed above. The block diagram of our proposed 
framework is illustrated in Figure 1. This method was 
developed as part of an ongoing study with the goal of 
investigating the relationship between prosodic characteristics 
of speech directed to infants with hearing loss and their 
language outcomes. This is a semi-automatic method that uses 
pre-defined F0 parameters and prelabeled speech utterances to 
model intonational pattern at the level of syllable and utterance. 

2.1. Utterance Segmentation and F0 Parameter 
Optimization 

Our proposed F0 extraction method starts by excluding –  
by hand – regions of speech likely to generate spurious F0 
values. The speech waveform and spectrogram are viewed 
along with a superimposed visual display of the F0 curve. 
Regions of modal phonation are marked in Praat TextGrid with 
‘x’ for inclusion. Regions of non-modal phonation are 
identified through visual inspection of the waveform, including 
creak and diplophonia, and by virtue of no ‘x’ label are 
excluded. Further, four parameters –  pitch floor, pitch ceiling, 
silence threshold, and voicing threshold – are adjusted within 
each vocalized region to provide a speaker-specific and 
acoustic-context-specific optimization for each F0 parameter 
on an utterance-by-utterance basis. Analysts visually inspect F0 
curves for each utterance in comparison with auditory 
impressions, iteratively adjusting the four named parameters in 



order to ensure a smooth and accurate F0 curve. Any changes 
from Praat’s default settings that are required to ensure a 
smooth and accurate curve, e.g., adjustment to the pitch ceiling 
of 600 Hz, are explicitly marked in the tier. The result is a set 
of labels in a Praat tier which are used by a script to exclude 
portions of speech expected to inaccurate F0 estimates (e.g., 
non-modal phonation), and/or to adjust Praat’s default 
autocorrelation parameters, resulting in a set of highly accurate 
F0 values. 

2.2. Outlier Removal 

By eliminating portions of speech with non-modal phonation in 
pre-processing steps as outlined above, instances of spurious F0 
values are dramatically reduced, enhancing accuracy overall. 
Additional robustness can be achieved by further post-
processing to remove outlier F0 values. It was shown that 
speaker-specific raw F0 values are not necessarily normally 
distributed and are often positively skewed [34]. This implies 
that incorporation of an outlier removal method that is tailored 
to the speaker-specific distribution of F0 values is useful to 
identify and exclude spurious values. This post-processing 
distribution-specific outlier removal approach is implemented 
in Matlab 9.3.0. (The Mathworks, 
http://www.mathworks.com). Spurious values were identified 
as values more than three scaled median absolute deviation 
(MAD) units from the distribution median as a robust measure 
of dispersion [35]. The scaled MAD is defined as	ܵܦܣܯ௜ ൌ ܿ௜ ∗
݉݁݀݅ܽ݊ሺ|ݔ௜ െ ݉݁݀݅ܽ݊ሺݔ௜ሻ|ሻ where ݔ is the sequence of F0 
values for each speaker ݅. The scaled parameter is calculated as 
in [35]. The number of spurious raw F0 values detected in this 
step was small since the previously applied F0 parameter 
optimization method strongly reduced the chances of inaccurate 
F0 values.  

2.3. F0 Stylization 

F0 stylization has been used to simplify raw F0 fluctuations over 
time and instead represent linguistically salient tonal 
information. The framework developed in the current study 
proposes two sequential steps. The first stylizes the F0 contour 
within each syllable based on the minima and maxima within 
the syllable. The second step recombines these stylized 
contours and identifies minima and maxima across the 
utterance. This approach reduces continuous F0 contours into 
independent observations that reflect non-monotonic minima 
and maxima within and across utterances.  

Our proposed F0 contour stylization at the syllable level first 
uses manually identified syllables within utterances [36] with 
breaks between utterances taken as pauses of 250 ms or greater. 
The F0 contour within each syllable is stylized using an 
adaptive scheme. If the variation of F0 within each syllable is 
monotonic, the contour is stylized using a linear fit [36], 
otherwise a 2nd-order spline function is used to stylize F0 within 
each syllable as proposed by Momel [37]. Then, the minimum 
and maximum, derived from the stylized F0 
contour within each syllable, are calculated and used 
as estimates of syllable-level F0 variations to fit a 2nd-order 
spline function. The turning points on the globally fitted 
syllable-based F0 contour are used as independent observations 
of F0 variation for each utterance. This stylization approach is 
designed to appropriately model highly fluctuating F0 contours 
in infant-directed speech [37], taking into account the structure 
within syllables, while identifying trends across syllables.  

2.4. Application in a Generalized Linear Mixed Effects 
Model (GLMM) 

The utterance-level turning points resulting from the aggregated 
stylized F0 contours within syllables can serve as independent 
observations to build GLMMs. These utterance level extrema 
obtained from the proposed algorithm reflect syllabic level 
detail but can be used to model fixed effects of F0 dynamics in 
infant-directed speech or adult-directed speech with subject-
level random effects for each talker. This is an ongoing project 
where we will use the comprehensive framework presented 
here to investigate how local and global variation in timing, 
distribution, and magnitude of F0 within and across utterances 
correlates with language development in children with hearing 
loss. 

3. Discussion 

Fundamental frequency (F0) is an important acoustic feature 
that cues linguistic and indexical information in speech. 
Tracking the fluctuation of F0 in continuous speech to model 
prosodic structure faces challenges that may negatively affect 
the reliability and validity of the estimated parameters from F0 

contours [13], [15], [34], [38]. The present work proposes a 
comprehensive framework for modeling local and global 
patterns of F0 dynamics by providing methodological solutions 

Figure 1: The proposed framework for 
characterization of F0 variation over time and 
modeling the fixed effects of F0 variation on infants’ 
language learning outcome. 
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to address these challenges. In this framework, the likelihood of 
spurious F0 outcomes is reduced by identification and exclusion 
of creaky, breathy, and other non-modal phonations. The issue 
of parameter optimization is addressed by proposing a speaker-
specific and context-specific F0 parameter adjustment scheme. 
An outlier removal procedure tailored to speaker-specific F0 
distribution assures thorough artifact removal in the F0 
extraction. These pre-processing steps ensure reliable 
extraction of F0 from complex acoustic environments despite 
previously identified challenges in the literature. 

Our proposed method for modeling F0-related prosodic 
structure in sentences is based on evaluating F0 fluctuation at 
syllabic and utterance level specificity within the same analysis 
[3]. In this framework, F0 contour stylization is performed on 
short syllable length time scales, and then characterized at 
longer utterance level time scales, capturing both local and 
global variations in F0. By identifying non-monotonic minima 
and maxima points at these time scales we can characterize the 
magnitude and timing of F0 dynamics in a discrete set of 
independent observations. These independent observations of 
F0 fluctuation allow us to model the relationship between F0 
dynamics and language development using GLMMs. We are 
specifically interested in modeling how F0 differences between 
infant-directed and adult-directed speech impact language-
learning outcomes in infants with cochlear implants.  

Despite solving many challenges in F0 analysis, the current 
procedure relies on hand-coded syllable boundaries. An 
automatic syllabification procedure would streamline analysis, 
but highly co-articulated word boundaries in natural speech, as 
shown by “can you …” segments [39], [40] (panel (B) and (C) 
of Figure 2) demonstrate one challenge in automatic vowel 
segmentation. Elongated speech stretches such as “… play” in 

Figure 2 also makes this automatic detection of vowel phones 
and syllable centers harder. 

4. Conclusion 

Despite advances in methods of F0 characterization, there are 
still some critical challenges that need to be addressed. These 
challenges are particularly apparent when analyzing speech 
with large dynamic range of F0 variation such as in motherese.  
The methods used in the field are not designed to deal with such 
speech, but accurate modeling of F0 as it varies over time is 
critical to understanding the role of prosodic cues delivered by 
motherese speech in infant’s language development. To this 
end, it is strategically important to understand whether infants 
benefit from prosodic cues conveyed by global rising and 
falling in F0 contour. By identifying independent observations 
of F0 at the level of syllables and utterances, we can begin to 
understand how F0 structures language learning.  

Our proposed framework provides a comprehensive F0 
contour parametrization approach that allows F0 data to be 
analyzed using GLMMs. This study provides a framework 
through which the effect of tonal variation in infant-directed 
speech on language outcome can be reliably modeled. The 
outcome is also translational to a clinical application of speech 
and language development. 
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Figure 2: A schematic of macroprosodic (i.e., post-lexical) and microprosodic (i.e., syllabic) F0 variation in a typical sentence 
spoken by a mother to her child using infant-directed speech. (A) Waveform of the sentence. (B) Spectrogram of the sentence. 
(C) The manual transcript of words and their boundaries. (D) The macroscopic variation of original F0 values transformed in 
Hz (black circles with yellow facecolor), the interpolated F0 contour (dashed and gray line), local minima (green circles) and 
maxima (orange circles) of F0 contour, and Momel F0 contour stylization (blue dotted line). (E) Microprosodic variation of F0 
within each word and the detected local minima and maxima.          
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