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Introduction
• A challenging issue in speech perception research is understanding how listeners
identify beginnings and endings of words (the word segmentation problem; Klatt,
1979). Word boundaries always coincide with syllable boundaries, which in turn
are almost always associated with amplitude envelope and other spectral
discontinuities (Stevens, 2000; Drullman, 1994). Neurons “entrain” to these
discontinuities, which is thought to be critical for neural processing of speech
(Ghitza, Giraud, & Poeppel, 2013).
• Sometimes, discontinuities can be absent at word boundaries. Words and
syllables may be heavily blended with surrounding speech, as in the case of words
beginning with a vowel; such words can be pronounced with or without
discontinuities (Dilley et al., 1996; Shockey, 2003; Bell et al., 2003).
•Other evidence indicates that when words lack discontinuities at their onset, the
rate of speech relative to context plays a critical role in whether a word is heard
(Dilley & Pitt, 2010).
• Question: In cases where words lack clear discontinuities, to what extent do
statistics of timing information in speech reliably distinguish word-present
and word-absent cases?
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BACKGROUND
• Listeners can rapidly draw inferences about the likely background of a speaker –

including their dialect and racial background – within milliseconds of hearing their
voice (Munson, 2007; Lattner & Friederici, 2003; Scharinger et al., 2011).

• The accuracy of perceptual recognition of dialect is better than chance (Purnell et al.,
1999).

• African American English (AAE) is a dialect spoken by many of the approximately
45 million African Americans.

• Acoustic cues carried by the word “hello” over a phone call were enough to identify
speaker’s racial background (Purnell et al., 1999; Scharinger et al., 2011)

• This dialect identification has led to subsequent discrimination in housing
(Purnell et al., 1999).

• It is still not clear which acoustic cues and phonetic contexts facilitate this rapid
inference about dialect and racial background.

• Speech is the outcome of a dynamic interaction between vocal folds vibratory
patterns and patterns of articulatory states and movement in the vocal tract.

• Dialect modulates phonatory and articulatory patterns during speech, leading to
distinct cross-dialectal acoustic representations (Fox & Jacewicz, 2009).

• Formant dynamic information is informative for separation of AAE from Standard
American English (SAE) dialect (Arjmandi et al., 2017), but the degree of
contribution of other acoustic dimensions has not yet been investigated.

RESULTS
• The average and standard deviation of the

fraction of variance explained by principal
component analysis (PCA) across 17
phonological contexts suggest that only 3
principal components (PCs) are enough to
represent the variability in acoustic feature space.

CONCLUSIONS

RESULTS

RESEARCH QUESTIONS:
• What are the acoustic dimensions relevant to the glottal source and/or the vocal

tract which are most informative for AAE versus SAE dialect separation?

• How does the degree of informativity of these acoustic cues for dialect
differentiation vary across different phonological contexts?

METHODS
MATERIALS:
• Six female speakers, all from Lansing, Michigan, participated in an sociolinguistic

interview.
• 3 AAE speakers and 3 SAE speakers

• Tokens of vowels conditioned on certain phonological contexts were identified.

• Closed syllables with a sonorant coda (/l/, /r/, /n/, or /m/) or non-sonorant coda,
from specific lexical items, to control for coarticulation (Table 1).
• Target stretches of speech consisted of vowel (V) or vowel-consonant (VC)

sequences (Total analyzed speech = 183.3 secs (100.1 sec AAE & 83.4 sec SAE)

• Sonorant sounds (e.g., V and VC) carry substantial acoustic cues relevant to dialect
identification (Jacewicz & Fox, 2013).

ACOUSTIC MEASURES:
• Four general categories of acoustic features were calculated to characterize acoustic

variations in multiple dimensions with respect to their informativeness in AAE vs.
SAE dialect separation.
1) Speech-based Features (Glottal Source + Vocal Tract): Measures that reflect the behavior

of both glottal source and vocal tract.
• H1-H2, H1-A1, H1-A1, H1-A2, A1-A3, H1-A3: These measures were calculated by amplitudes of the 1st and 2nd

harmonics (cf. H1, H2) relative to each other and to the amplitude of the 1st, 2nd , and 3rd formants (cf. A1, A2, A3)
• Spectral Slope (SS): Reflects the rate of decline in spectral amplitudes.

2) Vocal Tract Features: Measures that represent the natural resonances of the vocal cavity.
• F1, F2, & F3: The 1st, 2nd, and 3rd formant frequencies

3) Voice Quality (VQ) Measures: Measures that reflect the quality of voice during V or VC
pronunciation.

• Jitter & Shimmer: The average absolute difference between consecutive periods (jitter) and amplitude (shimmer),
normalized by average period and average amplitude.

ACOUSTIC MEASURES:
3) Voice Quality (VQ) Measures (cont.):

• Mean F0 & STD F0: Mean and standard deviation of F0
• Fraction of Unvoiced Frames (FOUF): Fraction of locally unvoiced frames
• Mean Harmonic-to-Noise Ratio (HNR): It reflects the degree of periodicity.

4) Duration & RMS: Measures to characterize energy and linguistic stress. Duration is used as a
physical correlate of linguistic stress (Fry, 1955), and RMS characterizes the amount of energy
in the voice.

ANALYSES:
1) Feature Evaluation: The informativeness of these acoustic features were

individually evaluated to identify their informativeness across these four categories in
separation of AAE versus SAE dialect contrast.
• Principal component analysis (PCA) is conducted to understand the most optimum

new dimension which explains major sources of variability in the data.
• The Mahalanobis distance (Theodoridis & Koutroumbas, 2011) was used as a

non-probabilistic measure to rank the acoustic features. It evaluates the distance of
a feature in a multi-dimensional space from the mean of the class.

2) Machine Learning of Sonorant Speech: A support vector machine (SVM) was
trained on the feature space to identify how much the acoustic dimensions formed by
these features are informative.

Figure 1. Schematic of the
method implemented to
extract the acoustic
features of the four
categories from V and VC
speech sounds. These
acoustic measures were
calculated from the
original signal or the
glottal source signal or
FFT spectrum.

Table 1. The distribution of acoustic features, which are
individually ranked by Mahalanobis distance measure, is
shown for each phonological context. The first five
acoustic features with more information in dialect
separation is listed.

• The results from ranking the acoustic features based on their informativeness in
AAE-vs-SAE dialect separation suggest that the main contributions come from
speech-based features and vocal tract features.

• Sonorant contexts of
/ɑl/, /ɪl/, and /il/
provide the most
informative acoustic
cues for the SVM
classifier to distinguish
AAE from SAE.

• The results from this study suggest that rapid recognition of AAE dialect
from SAE dialect is facilitated through interaction of acoustic features
representing both phonatory behaviors and articulatory gestures.

• Formants in V and VC provide substantial acoustic cues for recognition of
AAE from SAE.

• Investigating the acoustic cues from continuous speech, including obstruents,
rather than merely sonorant regions, can be planned for future studies.

• These findings also suggest that auditory perceptual categorization of AAE
from SAE occurs through the interaction of multiple acoustic cues in a
multidimensional acoustic space. Listeners dynamically adjust their cue
weighting mechanisms with respect to these dimensions to retrieve dialect-
related information.


